Skip to content
Main Navigation Puget Systems Logo
  • Solutions
    • Content Creation
      • Photo Editing
        • Recommended Systems For:
        • Adobe Lightroom Classic
        • Adobe Photoshop
        • Stable Diffusion
      • Video Editing & Motion Graphics
        • Recommended Systems For:
        • Adobe After Effects
        • Adobe Premiere Pro
        • DaVinci Resolve
        • Foundry Nuke
      • 3D Design & Animation
        • Recommended Systems For:
        • Autodesk 3ds Max
        • Autodesk Maya
        • Blender
        • Cinema 4D
        • Houdini
        • ZBrush
      • Real-Time Engines
        • Recommended Systems For:
        • Game Development
        • Unity
        • Unreal Engine
        • Virtual Production
      • Rendering
        • Recommended Systems For:
        • Keyshot
        • OctaneRender
        • Redshift
        • V-Ray
      • Digital Audio
        • Recommended Systems For:
        • Ableton Live
        • FL Studio
        • Pro Tools
    • Engineering
      • Architecture & CAD
        • Recommended Systems For:
        • Autodesk AutoCAD
        • Autodesk Inventor
        • Autodesk Revit
        • SOLIDWORKS
      • Visualization
        • Recommended Systems For:
        • Enscape
        • Lumion
        • Twinmotion
      • Photogrammetry & GIS
        • Recommended Systems For:
        • ArcGIS Pro
        • Agisoft Metashape
        • Pix4D
        • RealityCapture
    • AI & HPC
      • Recommended Systems For:
      • Data Science
      • Generative AI
      • Large Language Models
      • Machine Learning / AI Dev
      • Scientific Computing
    • More
      • Recommended Systems For:
      • Compact Size
      • Live Streaming
      • NVIDIA RTX Studio
      • Quiet Operation
      • Virtual Reality
    • Business & Enterprise
      We can empower your company
    • Government & Education
      Services tailored for your organization
  • Products
    • Puget Mobile
      Powerful laptop workstations
      • Puget Mobile 16″
    • Puget Workstations
      High-performance desktop PCs
      • AMD Ryzen
        • Ryzen 9000:
        • Small Form Factor
        • Mini Tower
        • Mid Tower
        • Full Tower
      • AMD Threadripper
        • Threadripper 7000:
        • Mid Tower
        • Full Tower
        • Threadripper PRO 7000WX:
        • Full Tower
      • AMD EPYC
        • EPYC 9004:
        • Full Tower
      • Intel Core Ultra
        • Core Ultra Series 2:
        • Small Form Factor
        • Mini Tower
        • Mid Tower
        • Full Tower
      • Intel Xeon
        • Xeon W-2500:
        • Mid Tower
        • Xeon W-3500:
        • Full Tower
    • Custom Computers
    • Puget Rackstations
      Workstations in rackmount chassis
      • AMD Rackstations
        • Ryzen 7000 / EPYC 4004:
        • R550-6U 5-Node
        • Ryzen 9000:
        • R132-4U
        • Threadripper 7000:
        • T121-4U
        • Threadripper PRO 7000WX:
        • T141-4U
        • T140-5U (Dual 5090s)
      • Intel Rackstations
        • Core Ultra Series 2:
        • C132-4U
        • Xeon W-3500:
        • X131-4U
        • X141-5U
    • Custom Rackmount Workstations
    • Puget Servers
      Enterprise-class rackmount servers
      • Rackmount Servers
        • AMD EPYC:
        • E200-1U
        • E140-2U
        • E280-4U
        • Intel Xeon:
        • X200-1U
    • Comino Grando GPU Servers
    • Custom Servers
    • Puget Storage
      Solutions from desktop to datacenter
      • Network-Attached Storage
        • Synology NAS Units:
        • 4-bay DiskStation
        • 8-bay DiskStation
        • 12-bay DiskStation
        • 4-bay RackStation
        • 12-bay FlashStation
      • Software-Defined Storage
        • Datacenter Storage:
        • 12-Bay 2U
        • 24-Bay 2U
        • 36-Bay 4U
    • Recommended Third Party Peripherals
      Curated list of accessories for your workstation
    • Puget Gear
      Quality apparel with Puget Systems branding
  • Publications
    • Articles
    • Blog Posts
    • Case Studies
    • HPC Blog
    • Podcasts
    • Press
    • PugetBench
  • Support
    • Contact Support
    • Support Articles
    • Warranty Details
    • Onsite Services
    • Unboxing
  • About Us
    • About Us
    • Contact Us
    • Our Customers
    • Enterprise
    • Gov & Edu
    • Press Kit
    • Testimonials
    • Careers
  • Talk to an Expert
  • My Account
  1. Home
  2. /
  3. Hardware Articles
  4. /
  5. Intel 12th Gen – How do P-Cores and E-Cores Compare

Intel 12th Gen – How do P-Cores and E-Cores Compare

Posted on January 27, 2022 by Kelly Shipman
Always look at the date when you read an article. Some of the content in this article is most likely out of date, as it was written on January 27, 2022. For newer information, see our more recent articles.

Table of Contents

  • Introduction
  • Performance-Core Scaling
  • Efficient-Core Scaling
  • Putting them Together
  • Conclusion

Introduction

For well over a decade, each new consumer CPU generation focused on faster and faster CPU cores, while retaining the Quad-core design. AMD recently changed the CPU landscape by introducing consumer-grade CPUs with higher core counts, pushing all the way to 16 cores. In response, Intel has slowly been increasing the core count on their Core series of CPUs but has not scaled beyond 10 cores in the i9 10900K (before dropping back down to 8 cores in the following generation).

Diagram of Intel\u0027s 12900K showing 8 P-Cores and 8 E-Cores, with 4 E-Cores being the same size as 1 P-Core
Image
Diagram of Intel\u0027s 12900K showing 8 P-Cores and 8 E-Cores, with 4 E-Cores being the same size as 1 P-Core
Open Full Resolution

With the introduction of Intel’s 12th generation CPU, code-named Alder Lake, they moved to a new hybrid architecture, combining CPU cores of varying sizes, dubbed Performance-cores, or P-cores, and Efficient-cores, or E-cores. P-cores are the traditional design that we’re used to, featuring high clock speeds and Hyper-Threading. The E-cores are physically smaller than P-cores and consume much less power. The trade-off is that they are much slower and don’t offer Hyper-Threading.

So exactly how fast or slow are these cores? And why did Intel choose to add slower cores instead of more fast cores? For the purpose of this article, we won’t go into all the paper specs on each of these cores. For that, you can reference our product page as well as our performance articles. Instead, we’ll look at how each type of core performs in real-world applications, and how the performance scales based on the number of each type of core in use. This will allow us to estimate the performance of various combinations of P and E-cores.

Performance-Core Scaling

Graph of Cinebench scores on 2, 4, 6 and 8 P-Cores showing a fairly linear scaling.
Image
Graph of Cinebench scores on 2, 4, 6 and 8 P-Cores showing a fairly linear scaling.
Open Full Resolution

First, we’ll look at the P-Core performance, as that is the style of core we normally see. Plotting the performance of 2, 4, 6, and 8 cores we see a fairly reliable scaling happening. It is not perfectly straight, likely due to the fact that as more cores come into play, the CPU needs to balance energy draw and heat with how fast each core runs. With virtually all CPU families, as the number of cores grows, the clock speed that all cores can run at the same time lowers. For the purpose of this article, we aren’t trying to be super precise, so the data we see here is enough for us to be able to estimate how additional P-core would behave.

Efficient-Core Scaling

Graph of Cinebench scores on 2, 4, 6 and 8 E-Cores showing a fairly linear scaling.
Image
Graph of Cinebench scores on 2, 4, 6 and 8 E-Cores showing a fairly linear scaling.
Open Full Resolution

The new Efficient-cores have one caveat to the testing. The motherboard BIOS we used would not allow all P-cores to be disabled. It would show them as disabled, but upon resetting the system, the BIOS would reload the last good configuration. There is likely some instruction set that requires a P-core the be active to control the handoff between cores, or some other technical reason for this requirement. We decided to leave two P-cores enabled, as it would still let us see how adding more E-cores would scale, we just won’t have an exact comparison with no P-cores involved. Once again, the data gives us a pretty linear scaling, adding roughly 2000 points for each pair of E-core added.

Putting them Together

Now that we have exact data on how these cores perform, we can begin to compare them, as well as estimate how different configurations of P and E cores would perform. According to Intel’s diagrams, four E-Cores are roughly the same size as one P-Core. We can put these into “blocks”, with the 12900K having 10 available blocks. The default configuration has 8 blocks dedicated to P-cores, meaning 8 cores and 16 threads, and two blocks dedicated to E-Cores, for another 8 cores.

Graph of Cinebench scores from previous graphs, plus estimates on how other combinations of cores would perform.
Image
Graph of Cinebench scores from previous graphs, plus estimates on how other combinations of cores would perform.
Open Full Resolution

From our estimates, this configuration is faster for rendering than if Intel had used all 10 blocks for P-Cores. On the other hand, if Intel configured a hypothetical CPU with two blocks for P-Cores, and the remaining 8 blocks providing 32 E-cores, we’d see a tremendous uplift in rendering performance. If Intel was to introduce this technology to a larger CPU, there is potential for some pretty high core count options.

Conclusion

This is admittedly a fairly narrow view of how these CPUs work, and the potential benefits of the P-Core/E-Core technology. The main goal Intel has with E-Cores is for background tasks or processes that don’t need the full power of the P-Cores. The computer will be able to shift some tasks to these lower-powered E-cores to save on energy consumption, while still having 8 high-performance cores dedicated to active tasks. For the vast majority of users, that is probably a good compromise. However, that doesn’t mean power users can’t dream of what CPUs would be possible.

If you'd like to see how Intel's new processors work in real-world scenarios, check out our 12th Gen Intel Core CPU Review Roundup.

CTA Image
Rendering Workstations

Puget Systems offers a range of powerful and reliable systems that are tailor-made for your unique workflow.

Configure a System!
CTA Image
Labs Consultation Service

Our Labs team is available to provide in-depth hardware recommendations based on your workflow.

Find Out More!

Related Content

  • Z890 vs. B860 vs. H810
  • AMD Ryzen 9 9950X3D and 9900X3D Content Creation Review
  • Is it Worth Upgrading to NVIDIA’s GeForce RTX 50 Series for 3D Artists?
  • Understanding Modern Desktop PC Hardware for Workstations
View All Related Content

Latest Content

  • Do Video Editors Need GeForce RTX 50 Series GPUs?
  • Adobe Premiere Pro and After Effects – What’s New In Version 25.2?
  • The Future of LED Walls: Arena & Nuke Stage Go Beyond Game Engines
  • 2025 Tariff Impacts at Puget Systems
View All
Tags: CPU, Intel, Intel 12th Gen, Rendering

Who is Puget Systems?

Puget Systems builds custom workstations, servers and storage solutions tailored for your work.

We provide:

Extensive performance testing
making you more productive and giving better value for your money

Reliable computers
with fewer crashes means more time working & less time waiting

Support that understands
your complex workflows and can get you back up & running ASAP

A proven track record
as shown by our case studies and customer testimonials

Get Started

Browse Systems

Puget Systems Mobile Laptop Workstation Icon

Mobile

Puget Systems Tower Workstation Icon

Workstations

Puget Systems Rackmount Workstation Icon

Rackstations

Puget Systems Rackmount Server Icon

Servers

Puget Systems Rackmount Storage Icon

Storage

Latest Articles

  • Do Video Editors Need GeForce RTX 50 Series GPUs?
  • Adobe Premiere Pro and After Effects – What’s New In Version 25.2?
  • The Future of LED Walls: Arena & Nuke Stage Go Beyond Game Engines
  • 2025 Tariff Impacts at Puget Systems
  • Z890 vs. B860 vs. H810
View All

Post navigation

 What Hardware do You Need to Edit DPX files in DaVinci Resolve Studio and Premiere Pro?Understanding Storage for Video Editing 
Puget Systems Logo
Build Your Own PC Site Map FAQ
facebook instagram linkedin rss twitter youtube

Optimized Solutions

  • Adobe Premiere
  • Adobe Photoshop
  • Solidworks
  • Autodesk AutoCAD
  • Machine Learning

Workstations

  • Content Creation
  • Engineering
  • Scientific PCs
  • More

Support

  • Online Guides
  • Request Support
  • Remote Help

Publications

  • All News
  • Puget Blog
  • HPC Blog
  • Hardware Articles
  • Case Studies

Policies

  • Warranty & Return
  • Terms and Conditions
  • Privacy Policy
  • Delivery Times
  • Accessibility

About Us

  • Testimonials
  • Careers
  • About Us
  • Contact Us
  • Newsletter

© Copyright 2025 - Puget Systems, All Rights Reserved.